用户名:  密码:   
网站首页即时通讯活动公告最新消息科技前沿学人动向两岸三地人在海外历届活动关于我们联系我们申请加入
栏目导航 — 美国华裔教授专家网科技动向生物医学
关键字  范围   
 
时光倒流,大脑能否“返老还童”
时光倒流,大脑能否“返老还童”
来源:科技日报 | 2016/6/16 20:50:31 | 浏览:2028 | 评论:0
 
时光倒流,大脑能否“返老还童”

    该患者两只眼睛的视觉敏感度不同,通过特别版本的俄罗斯方块游戏,可以用来治疗弱视——利用大脑可塑性,通过令双眼协同视物,来提高弱视患者的视觉。

时光倒流,大脑能否“返老还童”

    童年是人一生中学习能力最强的阶段,在这一阶段,大脑的可塑性极强。如果大脑发育回到童年,或可为治疗成年神经疾病提供新思路。

    早在2000多年前,亚里士多德就说过:“我们从小养成的习惯,造成的不是细微的差别,而是迥然不同的差异。”

    脑科学方面的最新发现为这句谚语注入了新的内容,我们可以从一个全新的角度来理解这句谚语。过去15年间,科学家对婴幼儿大脑回路的形成,有了更清楚的认识,并由此开始探索,如何利用这些认识,来“修补”大脑回路,以治疗那些最严重的神经和精神疾病。

    最强大脑与世界亲密“共舞”

    在大脑发育过程中,存在一些特殊的阶段——有些持续数月,有些持续数年——在这些阶段,大脑会迅速构建出大量的正确连接,这就是众所周知的关键期。关键期大多数发生在婴儿时期,但也有些一直到十几岁才到来。神经科学家已经确认了对视觉、听觉、语言发育及对各种社会功能的形成至关重要的关键期。在关键期,孩子的大脑就像与外部世界来了一场亲密的双人舞,大脑中的分子根据来自外部世界的光子和声波提供的线索,在脑细胞间构建并修整出新的神经连接,这些新的连接会不断强化,并一直保持,直到成年和老年。

    如果关键期发生得太早或太晚,或是在该开始时没开始,该结束时没结束,后果都将非常可怕。儿童可能会部分失明,或者容易患上像自闭症这样的疾病。比方说,如果婴儿一只眼睛患有先天性白内障,看不到周围的事物,那么她这只眼睛将可能永久失去视力,因为在视觉发育的关键期结束后,脑细胞将无法正确地搭建连接。视觉关键期从婴儿期开始,到8岁时结束,错过这个阶段,这个孩子眼睛发育出正常视觉的机会将极其渺茫。

    触动关键期的分子开关

    其实,大脑无时无刻不在变化,而不仅仅是在婴儿时期。神经科学家将大脑的这种特性称为可塑性。当你学习如何变戏法,或者使用一个新的手机应用时,微妙的改变就在突触部位(神经元传递神经信号的位置)上发生了。掌握一项新技能会引起神经元中神经化学物质发生改变,进而导致跨突触的神经连接变强或变弱。这种简单的可塑性贯穿人的一生,使得人们能够活到老学到老。

    在童年的某些关键时刻,大脑会发生一些特别重大的变化。婴儿出生时伴随着密集生长的突触,它们的数量必须消减才能发挥正确的作用,而这种突触的修剪就发生在关键期。

    早在50多年前,科学家就发现了这些对大脑发育至关重要的形成阶段。在之后的许多年中,传统观念都认为,关键期转瞬即逝,并且一旦结束就不再复返。不过,近来科学家利用精确到分子水平的先进技术对关键期所进行的一些研究,已经颠覆了很多主流观点。一些动物试验,甚至是对人体的研究已经表明,关键期或许能够被重新开启,并用于修复受到损伤的成年大脑。

    这些启示指向了一个惊人的可能性:也许有一天,我们能调整大脑中的化学开关,恢复关键期,让大脑重新搭建自己的神经连接,以治疗从弱视到精神病方面的神经和精神疾患。

    实际上,科学家已经找到了一系列分子开关,即触发物与阻碍物,能够标记这些关键期的开始与结束。科学家已经检测到了大脑中控制关键期的一个重要的信号分子——GABA(γ-氨基丁酸,一种重要的抑制性神经递质)。我们实验室初步发现,GABA和其他分子一道,能在关键期的启动和中止过程中发挥关键作用。特别是,我们发现了一种能产生GABA的神经元——小清蛋白阳性大型篮细胞,很有可能统筹着这一过程。

    让大脑回到童年

    将那些在实验动物身上测试过的、雄心勃勃的技术应用到病人身上,可能还需要数年,也许是几十年的时间。不过目前,对关键期的研究已经给神经类疾病的治疗带来了一些灵感,比如使用已经上市的药物,来部分恢复成人大脑的可塑性。

    研究人员希望达到的长期目标是,能够让生物钟倒流,并且重启关键期。在加利福尼亚大学旧金山分校的一个实验室内,研究人员试图将胚胎细胞移植到啮齿类动物中,从而令出生后逐渐老化的成年啮齿类动物的大脑,重新产生能释放GABA的小清蛋白神经元。移植之后,新的关键期重新开启,但值得注意的是,只有在细胞移植一个月后,新关键期才会开始,这表明关键期的设定是由一组特异的基因控制的。当我们的实验室删除这些定时基因后,甚至是正常的关键期的启动都会被延迟。

    另一个恢复可塑性的方法同样具有挑战性,那就是去除阻碍关键期重新开启的阻碍物。调控可塑性的一个靶点位于围神经网络(perineuronal net)中,这个网络是由一些类似软骨分子的分子构成的网格。围神经网络环绕在成熟的小清蛋白神经元周围,促使关键期结束,并由此防止突触发生进一步的结构性变化。

    围神经网络主要由硫酸软骨素蛋白聚糖——一种镶嵌着糖的蛋白分子复合物(糖蛋白)组成。当硫酸软骨素酶侵蚀掉这些分子后,可塑性的制动器就消失了。一个由英国和意大利科学家组成的研究团队,通过向弱视的老年大鼠的大脑中注射硫酸软骨素酶,溶解围神经网络,帮助这些大鼠重新获得了“新生”——新的关键期打开了。这些大鼠接收到了在它们幼崽时期缺失的视觉刺激,恢复了良好的视力。

    出于安全性考虑,把酶注射到大脑深部,需要接受美国食品及药品管理局的严格审查,所以不可能很快得到批准。然而,现有的很多药物,都有可能在某种程度上提高大脑的可塑性。在我们实验室参与的一项合作研究中,通过小规模试验,我们发现,一种抗癫痫和双相情感障碍的通用药物,能使成年人变得像孩子一样,善于学习新事物。

    大脑重构或影响自我意识

    从事大脑关键期研究的科学家经常问自己,人为什么会在自己的生命早期设置关键期,为自己的学习生涯设定限制。另外,如果我们因为想学习一项新技能,而重新开启关键期,会不会有危险呢?

    动物进化出关键期,并限制大脑可塑性,可能是为了保护脑细胞。小清蛋白细胞在高水平代谢过程中产生的自由基分子,会损害大脑组织——这可能也是大脑进化出围神经网络的原因。精神分裂症和其他精神疾病患者的大脑尸检报告显示,围神经网络和阻碍大脑可塑性的阻碍物,总体上都处于低水平。

    大脑可塑性不受限制可能造成的风险,在阿尔茨海默病患者身上可见一斑。负责复杂认知的高级脑区,如联合皮层,已经进化成可终身保持可塑性。在这些脑区中,能关闭关键期的硫酸软骨蛋白聚糖含量较少,而在神经退行性疾病发生时,它们也是最早发生细胞凋亡的地方。

    按需开启和关闭关键期,或许将有助于神经系统疾病的治疗。不过,随着关键期的开启,人的某些基本特性也可能会发生改变。未来,人类可能会开发出更加天才的方法来改变世界,因此也很可能需要一种新方法,来增强自己大脑的可塑性,以适应高速变化的外部世界。对此,我们需要高度注意,因为成年期的大脑重构,可能会威胁到人的自我意识。

    虽然我们都渴望拥有如儿童般的大脑可塑性,成为未来世界的佼佼者,但鱼和熊掌不可兼得。如果有一天,这种能打通大脑的神奇药物真的问世,如何取舍需要我们三思。

    延伸阅读

    GABA: 让婴幼儿大脑有序活动

    GABA的主要功能是使神经活动安静下来。它真的是儿童发育关键期的启动者吗?通过试验,科学家发现,正是这个神经递质给原本乱作一团的婴幼儿大脑带来了秩序。

    在婴儿最初的几个月里,大脑总是处于活跃状态,所有的神经元——可称为兴奋性细胞,都在无序地活跃着,就像一大群人,每个人都在杂言乱语。只有关键期开启后,大脑中的一些连接才开始显得井然有序。小清蛋白神经元释放出GABA,使得兴奋性细胞安静下来,停止“说废话”。GABA是通过延伸长长的、叫做轴突的“卷须”,来实现这个过程的——轴突在兴奋性神经元的细胞体(神经元的中心部位)周围,缠绕成篮子样的形状,来压制兴奋性细胞的过度活动,从而让特定细胞能够发出强烈而清晰的信号,达到兴奋和抑制的平衡。

    通过试验,研究者在啮齿类动物的视觉系统中,非常详尽地观察到了这一过程。首先,研究者通过基因改造来降低小鼠的GABA水平,结果关键期并没有如期开始;随后,向小鼠注射一种类似于安定的药物——苯二氮卓来增强GABA信号,关键期就开始回归正途了。

    动物研究已经表明,无论是基因紊乱还是环境压力,都能干扰神经系统兴奋和抑制间的脆弱平衡,并在错误的时间开启关键期。现在,研究人员已经开始将以下方向列为研究重点:能否通过纠正关键期的时间设定,重新实现大脑神经系统的平衡,从而预防或者治疗自闭症、精神分裂症或者其他神经疾病。

神经干细胞有助找回遗失的记忆 - 其或能取自皮肤未必来自大脑

时光倒流,大脑能否“返老还童”

即便是成人的大脑,其可塑性也比人们原本想象的要强很多,但随着年龄的增长,不少人最终也难免罹患痴呆和认知功能缺失等疾病。不过,美国科学家最新研究表明,未来有望利用神经干细胞再生人脑细胞,帮助恢复记忆。

据每日科学网站报道,最近,美国再生医学研究所副主任阿什克·谢蒂及其团队将提取的神经干细胞移植到海马体中,发现其帮助恢复了记忆。相关研究发表在《干细胞转化医学》杂志上。

据谢蒂介绍,海马体在学习、记忆及情绪控制方面具有重要作用,但随着年龄增长体积会不断缩小,导致记忆力明显下降。大脑中老化的海马体也会出现慢性炎症等与年龄相关的退行性病变。

该团队最新研究发现,将神经干细胞移植到年轻动物的海马体和年老动物的海马体中获得了同样的效果。这些移植的神经干细胞不仅活了下来,而且还能分化、再生,这有助于治疗与年龄增长相关的神经退行性疾病。

谢蒂表示,相比胎儿神经元,神经干细胞等多能干细胞能忍受移植过程中大脑微环境缺氧和创伤,从而取得比间接核分裂或相对成熟神经元更好的效果。在中风及大脑创伤条件下,神经干细胞同样可以反馈受伤信号并取代一些丢失的大脑皮质神经元。

谢蒂还说:“未必一定要从大脑中取得细胞。”不久的将来,可从皮肤中获得大量同种属神经干细胞,包括皮肤细胞在内的大量体细胞能被诱导生成多能干细胞。科学家通过这些细胞可以做很多事情,包括利用提取的神经干细胞来生产更多的神经干细胞或新的神经元。

谢蒂此前的研究注重于白藜芦醇(一种抗氧化物,红葡萄酒、花生和一些浆果中都有存在)对海马体的有益作用。虽然研究结果表明,白藜芦醇在防止记忆衰退上大有裨益,但此次最新研究成果为影响海马体功能找到了一种更直接的方式。 (姜靖)

相关栏目:『生物医学
近30年来,这5个癌症增长最明显!抓住癌症早期的5个信号 2024-11-06 [352]
新证据:长期喝酒增加结直肠癌风险!尤其是年轻人,不要不听劝! 2024-11-06 [331]
大选之际,华人女子非法入境美国被查出超高致死率传染病,民主党又添一债! 2024-11-04 [379]
严欢/石正丽团队首次提出人工设计病毒受体 2024-11-03 [416]
肥胖促癌的原因找到了!《科学》子刊:这种“酸”让肿瘤长得更快 2024-10-31 [486]
促氧化剂抗癌实锤了!科学家首次发现,维生素K3以独特的方式杀死癌细胞丨科学大发现 2024-10-31 [490]
哈佛博士生疯狂实验:一个月狂吃720个鸡蛋身体会怎样?结果大意外… 2024-10-31 [524]
几点睡觉算是熬夜?13万人研究提醒:不是11点,也不是12点,很多人搞错了 2024-10-31 [510]
免疫系统中的microRNA调控:历史与展望 2024-10-31 [308]
科学家借人类干细胞助猴子重见光明 2024-10-27 [608]
相关栏目更多文章
最新图文:
:北京和上海金融人的最新鄙视链 :日本政府《氢能利用进度表》 :美国《2016-2045年新兴科技趋势报告》 :天津工业大学“经纬英才”引进计划 :浙江财经大学国际青年学者论坛的邀请函 (10/31-11/1) :美国加大审查范围 北大多名美国留学生遭联邦调查局质询 :天安门广场喜迎“十一”花团锦簇的美丽景象 马亮:做院长就能够发更多论文?论文发表是不是一场“权力的游戏”?
更多最新图文
更多《即时通讯》>>
 
打印本文章
 
您的名字:
电子邮件:
留言内容:
注意: 留言内容不要超过4000字,否则会被截断。
未 审 核:  是
  
关于我们联系我们申请加入后台管理设为主页加入收藏
美国华裔教授专家网版权所有,谢绝拷贝。如欲选登或发表,请与美国华裔教授专家网联系。
Copyright © 2024 ScholarsUpdate.com. All Rights Reserved.