用户名:  密码:   
网站首页即时通讯活动公告最新消息科技前沿学人动向两岸三地人在海外历届活动关于我们联系我们申请加入
栏目导航 — 美国华裔教授专家网科技动向学人动向
关键字  范围   
 
周鸿祎:人脑芯片、量子计算 & 仿生计算机 - 为未来人工智能肝脑涂地
周鸿祎:人脑芯片、量子计算 & 仿生计算机 - 为未来人工智能肝脑涂地
2016/11/16 16:32:39 | 浏览:2341 | 评论:0

资本寒冬,商业模式类创业创新遇冷。在这样的背景下,能够逆势而上受人关注的,唯有人工智能领域。

周鸿祎:人脑芯片、量子计算 & 仿生计算机 - 为未来人工智能肝脑涂地

  人类社会经历过的PC互联网时代、移动互联网时代,以及现在所处的智能硬件时代,技术发展和商业模式创新之间始终是相辅相成的关系。每当科技发展的红利被商业模式创新挖掘殆尽后,经济也随之步入寒冬,直到下一轮技术革命的出现,商业模式创新才能重新迸发生机。

  现阶段移动互联网的商业模式创新已经挖光了Web2.0时代的技术红利,所有人都在寻找新技术,以期获得新的商业模式创新。人工智能技术无疑就是下一轮技术革命的焦点。假如未来的某一天,我们在这方面有了突破,那么新的商业模式也将涌现出来,带来一个甚至多个万亿级市场。

  在我看来,未来通用人工智能生态圈的格局会是下面将要介绍的样子。

人脑芯片

  2014年8月,IBM公司推出了一款名为TrueNorth的大脑原型芯片,TrueNorth 主要被用于计算机专业学习领域。TrueNorth芯片集成了100万个神经元和2.56亿个突触,这相当于一只蜜蜂的大脑,而正常人的大脑大约包含1000亿个神经元和无法统计数量的突触。

 

周鸿祎:人脑芯片、量子计算 & 仿生计算机 - 为未来人工智能肝脑涂地

量子计算

  普通计算机存储数据的方法是根据晶体管电路的状态,而量子计算则是根据粒子的量子状态,使用量子算法来进行数据操作。通过量子计算,可以大幅提升并行计算速度。不过遗憾的是,这方面还没有出现研究成果,谷歌曾经在2014年开始研制量子级计算机处理器,他们希望为机器人提供一个可以像人一样思考的大脑。

周鸿祎:人脑芯片、量子计算 & 仿生计算机 - 为未来人工智能肝脑涂地

仿生计算机

  仿生计算机可以解决构建大规模人工神经网络的问题。普通的CPU(中央处理器)、GPU(图形处理器)处理神经网络的效率很低,并且在占地、散热和耗电等方面都存在问题。专门的神经网络处理器可以很好地解决这些问题。在国内,陈云霁团队研发的寒武纪神经网络计算机依据仿生学原理,相比于主流GPU,取得了21倍的性能和300倍的性能功耗比提升。

  在图像、声音和面部识别系统变得越来越精准后,计算机也拥有了探察人的情感状态的能力,包括喜、怒、哀、乐、爱、恨、贪、痴等,并做出适当的反应。那么很多人会有这样的疑问:机器人能否拥有像一个正常人那样独立思考的能力?

  关于这个问题,我曾经与著名的互联网预言家、《连线》杂志前主编凯文 · 凯利有过一次交谈。在凯文的思想里,未来的人工智能会产生自己的意识,这会为我们完全掌控它带来一定的困难,但不会形成毁灭人类的威胁。绝大多数的人工智能都只会是工业人工智能服务型电器。

  我对360的战略规划就是全线硬件产品向人工智能看齐,从图像识别技术和大数据技术两个方向深度拓展。目前,我们已经在中国和美国成立了相应的技术研发团队,并且还相继进行了一系列并购。总的来说,360在人工智能领域的整体规划可分为以下4 个层次:

(1)最基本的硬件层面,研发、升级可以在云上、端上进行深度学习的专用芯片;

(2)面向大规模深度学习、训练的多机多卡软硬件平台,以及基于深度学习的各种人工智能的前沿算法;

(3)基于人工智能的各种智能硬件产品;

(4)在人工智能或者深度学习的基础上,使智能硬件具备自主学习能力。

  作为360未来主推的大方向,我对人工智能的设想是无论在硬件还是软件方面,都将拥有自主学习功能。阿尔法狗赢了之后,我非常兴奋,我兴奋的不是人工智能在围棋上战胜了人类,而是它为我们所有人做了一次非常好的概念普及,让我们真实地感受到人工智能领域的成果。

  但是,我所理解的人工智能并不会像阿尔法狗那样只表现在下围棋方面,也不会像好莱坞电影中那样可以威胁人类安全。人工智能就像工业革命之后所带来的新技术那样,为我们的生产、生活带来极大的便利。

  虽然目前看来,360智能摄像机还仅仅是一个小产品,功能也有限,但它只是一个开始。我期望在不远的将来,它能够根据面容区分出家人和陌生人,能够识别出你的表情是高兴还是悲伤,甚至还能在家里四处巡视,检查家里是否有漏水、漏气、漏电等异常情况。当发展到那个时候,它就是一个具备深度学习能力的智能家庭机器人了。

  为了加速达成这一愿景,360人工智能研究院院长颜水成正在带领团队研发新技术,并且做了以下布局。

01 建立软硬件训练平台:360net

  DeepMind公司曾经推出过DQN项目(deep-q-network),它是基于深度强化学习的游戏平台。我们从中受到了很多启发,并成功建立了一个基于软硬件的训练平台——360net。之所以构建训练平台,是由深度学习的本质决定的:要训练一个系统,大量的训练数据固然重要,同时快速的响应时间也必不可少。

  360net支持多机多卡,可以用100张卡或者几百张卡连在一起对深度学习进行训练,同时它还具有高度的兼容性和可扩展性,这意味着将来我们还可以吸纳其他的深度学习模块,来减少开发所需要的时间。对我们的人工智能业务而言,360net是至关重要的根基。

02 稳定、低功耗的人脸分析系统

  360的人脸分析系统已经被应用到360手机、儿童手表、行车记录仪上。此外,线上搜索也在一步步配置人脸分析技术。人脸分析系统可以对性别、年龄、表情等进行分析,当下直播行业的火热,让这套系统的前景非常可观。

  众所周知,在人脸分析过程中,准确定位人脸上的关键点是验证技术的一个标准,我们已经把这套技术应用到了360的产品当中。未来,360还将进一步提升人脸分析的准确度,这一切的基础就是大量图像数据的积累。

03 车辆环境感知

  我们曾经招募了一个计算机视觉团队,他们来到360之后,主要负责车辆环境感知方面的研究,主要是物体的分类、检测和分割。这是360对无人驾驶汽车的布局,通过技术实现车辆和行人之间的精确定位,可以更好地辅助驾驶。

  试想一下,在城市环境中,汽车可以自动进行车道线的检测,同时预计出距离红绿灯以及交通摄像头的距离,保证汽车的安全。而在检测出可行驶区域之后,就可以准确地预测道路车辆可移动的轨迹和范围,这对于车的路线预判和选择有巨大的价值。

  当然,我对人工智能的设想建立在泛安全的基础之上。这里所说的泛安全指两个方面:传统的线上安全和线下安全。线上安全处理的主要是大数据方面,线下安全则是人与智能硬件的交互。我们把信息传递给智能硬件之后,智能硬件要能理解我们的意图,同时要把它的信息反馈回来。

  安全是基础,只有在安全的基础上,我们才有可能考虑舒适、便捷的人工智能式生活。所以,360首先还是要利用IOT技术解决人们的家居安全和出行安全。对于做安全起家的360来说,人工智能是一个更适合我们的方向。

  当手机行业热潮来临的时候,我们视而不见;当O2O模式大行其道的时候,我们依然不为所动。但是,当人工智能的概念进入我视线的那一刻,我的第一个想法就是要抓住人工智能这波浪潮,并为之肝脑涂地,在所不惜。

相关栏目:『学人动向
普林斯顿教授“辛辣”点评中国学生:一个普遍的「坏习惯」阻碍了他们的长远发展 2024-11-16 [81]
朱民:中国经济将面临巨大的结构性变化! 2024-11-06 [365]
巫宁坤:活下去,并且“在日暮时燃烧咆哮” 2024-11-04 [402]
周其仁:中国经济高位下行的根本原因 2024-11-03 [431]
张维迎:让我最痛心的是社会变得如此虚伪,如此假话连篇 2024-10-31 [536]
达龙·阿西莫格鲁:制度视角下的中国未来经济增长 2024-10-31 [490]
钱满素:献身精神本身不足以成为一种美德 2024-10-31 [487]
战争琐思录(一):关于诺娃 2024-10-31 [485]
​“中产阶级气质”批判——关于当代中国知识者精神状态的一份札记 2024-10-27 [650]
后生可畏!这位华裔才俊掌控着全球顶尖公司AI模型训练! 2024-10-21 [738]
相关栏目更多文章
最新图文:
Colleen Flaherty 翻译 刘勤:MIT教授发文《美国经济评论》 :生命科学受益于明星科学家们的死亡 :北京和上海金融人的最新鄙视链 :日本政府《氢能利用进度表》 :美国《2016-2045年新兴科技趋势报告》 :天津工业大学“经纬英才”引进计划 :浙江财经大学国际青年学者论坛的邀请函 (10/31-11/1) :美国加大审查范围 北大多名美国留学生遭联邦调查局质询 :天安门广场喜迎“十一”花团锦簇的美丽景象
更多最新图文
更多《即时通讯》>>
 
打印本文章
 
您的名字:
电子邮件:
留言内容:
注意: 留言内容不要超过4000字,否则会被截断。
未 审 核:  是
  
关于我们联系我们申请加入后台管理设为主页加入收藏
美国华裔教授专家网版权所有,谢绝拷贝。如欲选登或发表,请与美国华裔教授专家网联系。
Copyright © 2024 ScholarsUpdate.com. All Rights Reserved.