|
|
|
《ACS NANO》发表周崇武教授等最新研究:用新型生物传感器监测眼泪和汗液中的葡萄糖水平 |
|
2018/1/18 1:54:01 | 浏览:2661 | 评论:0 |
|
|
|
|
通过眼泪或汗水不断追踪一个人的血糖水平,可以为糖尿病人提供更实时更全面的信息。
南加州大学电气工程系的周崇武教授在ACS Nano杂志上报道了一种超薄灵活的生物传感器,
该传感器可以结合到隐形眼镜或腕表的背部,用于实时葡萄糖追踪。
可穿戴式传感器是我们日益数字化世界的一部分。然而现在市售的传感器仅能监测用户的身体活动(例如心率,步数)。在分子水平上创建测量健康指标的方法已经变得更具挑战性,但其中的一些好处可能会改变生活。诊断和跟踪条件通常是通过分析某人的血液样本来完成的。然而,手指刺血或抽血的痛苦会阻止人们警惕地监视糖尿病等需要定期检查的情况。为了消除这一过程,可穿戴葡萄糖传感器正在发展中。由于多种因素的阻碍,例如有些设备无法检测出汗和眼泪的低水平葡萄糖,或者在弯曲时停止工作。周崇武及其同事解决了这些问题。
研究人员利用氧化铟的纳米带,葡萄糖氧化酶,天然壳聚糖膜和单壁碳纳米管创建了一种生物传感器。当测试样品中存在葡萄糖时,它与酶相互作用,引发短链反应并最终产生电信号。测试表明,该设备可以检测10纳摩尔到1毫摩尔范围内的葡萄糖浓度,其灵敏度足以覆盖糖尿病患者的汗液,唾液和眼泪中典型的葡萄糖水平。研究结果显示,弯曲变形100次并没有明显影响其表现。除了葡萄糖跟踪,研究人员还建议,传感器也可以用于食品和环境部门的监测。
“Highly Sensitive, Conformal and Wearable In2O3 Nanoribbon Transistor Biosensors with Integrated On-chip Side Gate for Glucose Monitoring in Body Fluids”
Highly Sensitive and Wearable In2O3 Nanoribbon Transistor Biosensors with Integrated On-Chip Gate for Glucose Monitoring in Body Fluids
†Mork Family Department of Chemical Engineering and Materials Science and ‡Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, United States
§ Center of Excellence for Green Nanotechnologies, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology, P.O Box 6086, Riyadh 11442, Saudi Arabia
∥ Department of Electrical and Computer Engineering, University of Jeddah, 285 Dhahban 23881, Saudi Arabia
⊥ Department of Electrical and Computer Engineering, King Abdulaziz University, Abdullah Sulayman Street, Jeddah 22254, Saudi Arabia
# Department of Electrical Engineering, University of California, Los Angeles, 420 Westwood Plaza, 5412 Boelter Hall, Los Angeles, California 90095, United States
ACS Nano, Article ASAP
DOI: 10.1021/acsnano.7b06823
Publication Date(Web):January 17, 2018
Copyright © 2018 American Chemical Society
Nanoribbon- and nanowire-based field-effect transistor(FET)biosensors have stimulated a lot of interest. However, most FET biosensors were achieved by using bulky Ag/AgCl electrodes or metal wire gates, which have prevented the biosensors from becoming truly wearable. Here, we demonstrate highly sensitive and conformal In2O3 nanoribbon FET biosensors with a fully integrated on-chip gold side gate, which have been laminated onto various surfaces, such as artificial arms and watches, and have enabled glucose detection in various body fluids, such as sweat and saliva. The shadow-mask-fabricated devices show good electrical performance with gate voltage applied using a gold side gate electrode and through an aqueous electrolyte. The resulting transistors show mobilities of ∼22 cm2 V–1 s–1 in 0.1× phosphate-buffered saline, a high on–off ratio(105), and good mechanical robustness. With the electrodes functionalized with glucose oxidase, chitosan, and single-walled carbon nanotubes, the glucose sensors show a very wide detection range spanning at least 5 orders of magnitude and a detection limit down to 10 nM. Therefore, our high-performance In2O3 nanoribbon sensing platform has great potential to work as indispensable components for wearable healthcare electronics. |
|
|
|