用户名:  密码:   
网站首页即时通讯活动公告最新消息科技前沿学人动向两岸三地人在海外历届活动关于我们联系我们申请加入
栏目导航 — 美国华裔教授专家网最新消息社区报道
关键字  范围   
 
喻梦捷教授研发出首台可保护光学系统免受不需要的反射的集成光学隔离器
2023/6/28 12:57:38 | 浏览:3814 | 评论:0

A first-of-its-kind integrated optical isolator

Device protects optical systems from unwanted reflections with dramatically enhanced performance

 

An optical isolator developed at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS)could drastically improve optical systems for many practical applications.

All optical systems – used for telecommunications, microscopy, imaging, quantum photonics, and more – rely on a laser to generate photons and beams of light. To prevent those lasers from damage and instability, these systems also require isolators, components that prevent light from traveling in undesired directions. Isolators also help cut down on signal noise by preventing light from bouncing around unfettered. But conventional isolators have been relatively bulky in size and require more than one type of material to be joined together, creating a roadblock to achieving enhanced performance.

Now, a team of researchers led by electrical engineer Marko Lončar at SEAS has developed a method for building a highly-efficient integrated isolator that’s seamlessly incorporated into an optical chip made of lithium niobate. Their findings are reported in Nature Photonics.

喻梦捷教授研发出首台可保护光学系统免受不需要的反射的集成光学隔离器

Optical micrograph of the electro-optic isolator chip on thin-film lithium niobate, comprising four devices with varying modulation length.(Credit:Loncar Lab/Harvard SEAS)

“We constructed a device that lets light emitted by the laser propagate unaltered, while the reflected light that travels back towards the laser changes its color and gets re-routed away from the laser,” said Lončar, Tiantsai Lin Professor of Electrical Engineering at SEAS. “This is accomplished by sending electrical signals in the direction of the reflected optical signals, thus taking advantage of the excellent electro-optic properties of lithium niobate,” in which voltage can be applied to change the properties of optical signals, including speed and color.

“We wanted to create a safer environment for a laser to operate in, and by designing this one-way street for light, we can protect the device from the laser’s reflection,” said Mengjie Yu, co-first author on the paper and a former postdoctoral researcher in Lončar’s lab. “To our knowledge, when compared to all other demonstrations of integrated isolators, this device performs the best optical isolation in the world. In addition to isolation, it offers the most competitive performance across all metrics including loss, power efficiency, and tunability.”

“What’s exceptional about this device is that at its core it’s incredibly simple – it’s really just one single modulator,” says Rebecca Cheng, co-first author on the paper and a current Ph.D. student in Lončar’s lab. “All previous attempts at engineering something like this required multiple resonators and modulators. The reason we can do this with such remarkable performance is because of lithium niobate’s properties.”

Another reason for the high performance and efficiency has to do with the size of the device – the team built it at the Harvard Center for Nanoscale Systems, fabricating a chip measuring 600 nanometers thick with etchings(to guide the light using prescribed nanostructures)up to 320 nanometers deep. 

“With a smaller device, you can control light more easily and also put that light in closer proximity to the electrical signals, thus achieving a stronger electrical field with the same voltage,” enabling more powerful control of light, Yu said.

The scaled-down dimensions and ultralow loss property of this platform also boost optical power. 

“Since the light doesn’t have to travel so far, there is less decay and loss of power,” Cheng said. 

Finally, the teams show the device can successfully protect an on-chip laser from external reflection. 

“We are the first team to show the laser’s phase-stable operation under the protection of our optical isolator,” said Yu.

Altogether, the advance represents a significant leap forward for practical, high-performance optical chips. The team reports that it can be used with a range of laser wavelengths, only requiring a counter-propagating electrical signal to achieve the desired effects.

The team hopes the breakthrough – part of a larger, DARPA-funded effort to integrate lasers and photonics components on a chip at extremely small scales – will unlock new capabilities in a range of applications, spanning the telecommunications industry to time-frequency transfer, a way of precisely measuring time down to the atomic and sub-atomic scale that could have implications for quantum research and computing.

“Integrating all aspects of an optical system onto a single chip could replace many larger, more costly, and less efficient systems,” Yu said. “Combining all these things could revolutionize many fields of work.”

Harvard’s Office of Technology Development has protected the intellectual property arising from the Loncar Lab’s innovations in lithium niobate systems. Loncar is a cofounder of HyperLight Corporation, a startup which was launched to commercialize integrated photonic chips based on certain innovations developed in his lab.

The research was a collaboration between Harvard, HyperLight, University of Southern California and Freedom Photonics. Additional paper authors include Christian Reimer, Lingyan He, Kevin Luke, Eric Puma, Linbo Shao, Amirhassan Shams-Ansari, Xinyi Ren, Hannah R. Grant, Leif Johansson, and Mian Zhang. 

This work was supported by the Defense Advanced Research Projects Agency(HR0011-20-C-0137), the Office of Naval Research(N00014-18-C-1043 and N00014-22-C-1041), the Air Force Office of Scientific Research(FA9550-19-1-0376), and a Draper graduate student fellowship.

相关专题二:『美国华裔教授专家网活动集锦
『社区动态』 晨光基金會(美國)留學生獎助學金 2024-02-10 [535]
『内外互动』 萧东:2023年美国躲过萧条,2024年呢? 2024-02-04 [760]
『社区报道』 中国驻洛杉矶总领馆举办2024年春节招待会 2024-02-04 [795]
『学术论坛』 第31届环太平洋管理国际研讨会 征文和邀请通知 2024-02-05 [572]
『社区报道』 中国驻洛杉矶总领馆举办纪念中美建交45周年招待会 2024-01-29 [879]
『社区动态』 2024年国泰银行奖学金于2024年1月1日至2024年3月15日接受申请 2023-12-22 [1736]
『社区报道』 AI颠覆数学研究!陶哲轩借AI破解数学猜想,形式化成功震惊数学圈 2023-12-09 [2074]
『社区报道』 孙涤教授应邀访问中科院虚拟经济与数据科学研究中心 2023-11-26 [2270]
『社区报道』 UCLA举办庆祝活动 祝贺华裔教授周敏荣膺美国两院院士 2023-11-16 [2560]
『社区报道』 斯坦福大学崔屹教授,最新Joule! 2023-11-15 [2539]
相关专题更多文章
相关栏目:『社区报道
国际法律联盟 | 美国禁止与特定国家进行敏感个人数据跨境交易 2024-03-04 [14]
美国2024最安全和最危险城市排名!你的城市上榜了吗? 2024-03-03 [1080]
[美国新闻与世界报道]: 全美生活品质最高5城市 2024-02-04 [356]
$2万7000在洛杉矶买新房? 2024-02-04 [420]
美国北京联合会隆重举办新春年会暨成立32周年庆典 2024-02-21 [230]
2024 美国排名前100的大学 2024-02-14 [432]
美国名校“雷人”广告语 2024-02-15 [405]
中国驻洛杉矶总领馆举办2024年春节招待会 2024-02-04 [795]
南加州大学 校友会专讯 USC Trojan Family Magazine 2024-01-30 [707]
中国驻洛杉矶总领馆举办纪念中美建交45周年招待会 2024-01-29 [879]
相关栏目更多文章
最新图文:
:美国加大审查范围 北大多名美国留学生遭联邦调查局质询 :天安门广场喜迎“十一”花团锦簇的美丽景象 马亮:做院长就能够发更多论文?论文发表是不是一场“权力的游戏”? :印裔人才在美碾压华裔:我们可以从印度教育中学到什么? :北京452万人将从北京迁至雄安(附部分央企名单) :《2019全球肿瘤趋势报告》 :阿尔茨海默病预防与干预核心讯息图解 :引力波天文台或有助搜寻暗物质粒子
更多最新图文
更多《即时通讯》>>
 
打印本文章
 
您的名字:
电子邮件:
留言内容:
注意: 留言内容不要超过4000字,否则会被截断。
未 审 核:  是
  
关于我们联系我们申请加入后台管理设为主页加入收藏
美国华裔教授专家网版权所有,谢绝拷贝。如欲选登或发表,请与美国华裔教授专家网联系。
Copyright © 2024 ScholarsUpdate.com. All Rights Reserved.