用户名:  密码:   
网站首页即时通讯活动公告最新消息科技前沿学人动向两岸三地人在海外历届活动关于我们联系我们申请加入
栏目导航 — 美国华裔教授专家网最新消息社区报道
关键字  范围   
 
UCR殷亚东教授团队发现磁场具手性,可用于组装手性超结构
2023/6/29 14:24:10 | 浏览:5119 | 评论:0

 

Chemists develop new method to create chiral structures

 

UCR殷亚东教授团队发现磁场具手性,可用于组装手性超结构

Some molecules exist in two forms such that their structures and their mirror images are not superimposable, like our left and right hands. Called chirality, it is a property these molecules have due to their asymmetry. Chiral molecules tend to be optically active because of how they interact with light. Oftentimes, only one form of a chiral molecule exists in nature, for example, DNA. Interestingly, if a chiral molecule works well as a drug, its mirror image could be ineffective for therapy.

UCR殷亚东教授团队发现磁场具手性,可用于组装手性超结构
(Jonas Reuel/iStock/Getty Images Plus)

In trying to produce artificial chirality in the lab, a team led by chemists at the University of California, Riverside, has found that the distribution of a magnetic field is itself chiral.

“We discovered that the magnetic field lines produced by any magnet, including a bar magnet, have chirality,” said Yadong Yin, a professor of chemistry, who led the team. “Further, we were also able to use the chiral distribution of the magnetic field to coax nanoparticles into forming chiral structures.”

Traditionally, researchers have used “templating” to create a chiral molecule. A chiral molecule is first used as the template. Achiral(or non-chiral)nanoparticles are then assembled on this template, allowing them to mimic the structure of the chiral molecule. The drawback to this technique is that it cannot be universally applied, being heavily dependent on the specific composition of the template molecule. Another shortcoming is the newly formed chiral structure cannot be easily positioned at a specific location on, say, an electronic device.

Yadong Yin(left)and Zhiwei Li. Li, the first author of the research paper, is a former graduate student in Yin's lab.(UCR/Yin lab)

“But to gain an optical effect, you need a chiral molecule to occupy a particular place on the device,” Yin said. “Our technique overcomes these drawbacks. We are able to rapidly form chiral structures by magnetically assembling materials of any chemical composition at scales ranging from molecules to nano- and microstructures.”

Yin explained that his team’s method uses permanent magnets that consistently rotate in space to generate the chirality. He said transferring chirality to achiral molecules is done by doping, that is incorporating guest species, such as metals, polymers, semiconductors, and dyes into the magnetic nanoparticles used to induce chirality.

Study results appear today in the journal Science.

Yin said chiral materials acquire an optical effect when they interact with polarized light. In polarized light, light waves vibrate in a single plane, reducing the overall intensity of the light. As a result, polarized lenses in sunglasses cut glare to our eyes, while non-polarized lenses do not. 

“If we change the magnetic field that produces a material’s chiral structure, we can change the chirality, which then creates different colors that can be observed through the polarized lenses,” Yin said. “This color change is instantaneous. Chirality can also be made to disappear instantaneously with our method, allowing for rapid chirality tuning.”

The findings could have applications in anti-counterfeit technology. A chiral pattern that signifies the authenticity of an object or document would be invisible to the naked eye but visible when seen through polarized lenses. Other applications of the findings are in sensing and the field of optoelectronics.

“More sophisticated optoelectronic devices can be made by taking advantage of the tunability of chirality that our method allows,” said Zhiwei Li, the first author of the paper and former graduate student in Yin’s lab. “Where sensing is concerned, our method can be used to rapidly detect chiral or achiral molecules linked to certain diseases, such as cancer and viral infections.”

Yin and Li were joined in the research by a team of graduate students in Yin’s lab, including Qingsong Fan, Zuyang Ye, Chaolumen Wu, and Zhongxiang Wang. Li is now a postdoctoral researcher at Northwestern University in Illinois.

The research was funded by a grant to Yin from the National Science Foundation. The UCR Office of Technology Partnerships has filed a patent application related to this work.

The research paper is titled “A magnetic assembly approach to chiral superstructures.”

Header image caption: The photos depict the vibrant colors exhibited by a dispersion of magnetic nanoparticles when subjected to magnetic fields with varying chiral distributions, as observed through polarized lenses.(UCR/Yin lab)

相关专题二:『美国华裔教授专家网活动集锦
『学人动向』 丘成桐:中国现今数学还没有达到美国20世纪40年代水平 2024-05-06 [1989]
『社区报道』 AI教母李飞飞首次创业!成立“空间智能”公司,已完成种子轮 2024-05-05 [1781]
『社区报道』 祝贺!鲍哲南教授多位华人学者当选美国国家科学院院士 2024-05-05 [1813]
『社区报道』 数学大师丘成桐:为何说中国的科技肯定要倒退20年? 2024-04-26 [2134]
『社区报道』 丛京生教授等13位华人学者当选美国艺术与科学院院士 2024-04-26 [2124]
『社区报道』 天才陶哲轩“啥是好的数学?” 经济学界呼应“啥是好的经济学?” 2024-04-20 [2125]
『社区报道』 UCLA陶哲轩教授力荐、亲自把关:AI for Math照这个清单学就对了 2024-04-16 [2333]
『社区报道』 华裔科学家李飞飞:她看见的世界和她改变的世界 2024-04-14 [2281]
『社区报道』 陶哲轩转发、菲尔兹奖得主领衔:AI正在颠覆数学家的工作方式 2024-04-08 [2346]
『社区报道』 李飞飞教授主讲,斯坦福2024 CS231n开课,依旧座无虚席 2024-04-06 [2433]
相关专题更多文章
相关栏目:『社区报道
科睿唯安发布:因操纵引文,17种期刊影响影子遭取消! 2024-06-29 [1212]
日本转型留给世界的四大教训 2024-06-29 [1340]
东北挖出600多吨金条,日本:别碰,都是我们的,这是怎么回事 2024-06-27 [734]
NBA历史打球最肮脏的10大球星 2024-06-26 [571]
The FDA has recently approved the following devices to be marketed. Additional items can be found on the Recently Approved Devices page. 2024-06-24 [574]
27年,这对美国夫妇抚养11个中国弃婴长大!——揭秘这个收养家庭背后的故事 2024-06-24 [654]
黄仁勋子女经历曝光:不卷名校,加入英伟达前开餐厅当厨子 2024-06-24 [667]
TSA创下单日筛查人数最多的纪录,为创纪录的独立日周末旅行量做好准备 2024-06-24 [543]
大学宿舍,真的会毁了很多人 2024-06-20 [291]
跳喷泉?睡衣跑?从UC系到斯坦福,加州大学11项有趣的校园传统! 2024-06-20 [234]
相关栏目更多文章
最新图文:
:大数据分析图解:2019中国企业500强 张梦然:英国惠康桑格研究所:人体内的微生物与出生方式有关 :美众议院将调查华裔部长赵小兰“利用职权为家族谋利“ :UCLA CCS 2019 Fall Quarter Lecture Series Overview 谭晶晶:美国科技界高度关注中国科技创新进展 :推荐:2019年底前中国高校重要学术论坛(10月 - 12 月) :黄奇帆:今后10年,中国经济将发生5个历史性变化 :为了在外太空住,人们都设计过怎样的房子?
更多最新图文
更多《即时通讯》>>
 
打印本文章
 
您的名字:
电子邮件:
留言内容:
注意: 留言内容不要超过4000字,否则会被截断。
未 审 核:  是
  
关于我们联系我们申请加入后台管理设为主页加入收藏
美国华裔教授专家网版权所有,谢绝拷贝。如欲选登或发表,请与美国华裔教授专家网联系。
Copyright © 2024 ScholarsUpdate.com. All Rights Reserved.