【对于占据宇宙2/3的暗能量,我们仍然一无所知,只有想象力丰富的各种猜测。现在,科学家已经上天入地开始全面围捕暗能量,希望能够逮到蛛丝马迹,确认它的真正身份。图片来源:blogspot.com】
自打发现有一种神秘的东西在把宇宙扯开,这15年来我们一直在绞尽脑汁。但我们仍然不知道它是什么。它无处不在,却又无法被看见。它在宇宙成分中占据了超过三分之二,但我们不知道它从何而来,又由什么构成。美国加州理工学院的理论物理学家肖恩·卡罗尔(Sean Carroll)说:“大自然还没有准备好向我们透露任何有关的线索。”
不过,至少我们为这种最神秘的东西起了个名字:暗能量。现在,对它的追捕正在进行。2013年年底,天文学家将启动一项新的巡天,在爆炸的恒星和古老的星系团之间寻找这些东西的迹象。一系列的空间任务和地面上的巨型望远镜很快也会加入其中。同时,一些物理学家正在探求一个非正统的想法:在实验室里诱捕暗能量。
迄今为止,我们对暗能量仍知之甚少,所知的或许只限于3点。第一,暗能量是向外推的。1998年,我们首次留意到了这一点,因为我们发现某一类超新星爆炸的亮度暗得出乎意料,说明它们的距离远过我们的预期。空间似乎从某个时刻起开始了加速膨胀,就好像有一种斥力抵御着物质间的引力在向外推动一样。
第二,暗能量大量存在。星系的运动和成团能告诉我们宇宙中有多少物质,而大爆炸后38万年时发出的宇宙微波背景辐射,则向我们透露了宇宙中物质和能量的总密度。这第二个数字要比第一个大得多。根据最新的观测数据,包括欧洲空间局普朗克卫星的微波观测,宇宙中大约68%的成分是以非物质的、表现为斥力的能量形式出现的。在每立方千米的空间中大约有1焦耳。
第三,暗能量让物理学家富于创造力的思维充满了活力。他们已经提出了数百种不同且充满想象力的理论。
其中最平淡的,当属宇宙学常数,不过即便如此,它仍属于“狂野之物”。它是空间固有的能量密度,在爱因斯坦的广义相对论下会产生斥力。随着空间膨胀,它会越来越多,使得它的排斥力超过因物质日益分散而逐渐变弱的引力。粒子物理学甚至为它提供了一个起源:在充满了不确定性的量子真空中不断出现和消失的虚粒子。但问题是,这些粒子的能量太多了——根据最简单的计算,每立方千米含有的能量约为10120焦耳。
这一灾难性的差异,为琳琅满目的其他替代理论留下了生存空间。比如说,暗能量有可能是“第五元素”(quintessence,又译作“精质”),一种假想的能量,能渗透进空间,随时间改变,甚至能在不同的地方聚集。它也可能是一种经过修改的引力,在远距离上表现为斥力。又或者,它是地球在宇宙中所处的特殊位置造成的错觉。暗能量还可能是波长比可观测宇宙大万亿倍的无线电波,甚至有可能是更奇特的东西。
“许多聪明人都试图构想出比宇宙学常数更好的东西,或者去理解为什么宇宙学常数具有如此的数值,”卡罗尔说,“大致说来,他们都失败了。”
黑暗降临
观测暗能量是否会随时间变化,是做出裁决的一种方式。如果它确实随时间演化,宇宙学常数就可以排除了:作为空间的固有特性,它的密度应该保持不变才对。与之相反,在大多数“第五元素”模型中,随着空间的膨胀,暗能量会慢慢地稀释——不过在一些模型中,它实际上会增强,加速宇宙的膨胀。在大多数修改引力的理论中,暗能量的密度也会变化。它甚至可以先上升后下降,或者反过来。
宇宙的命运完全取决于这一平衡。如果暗能量保持稳定,宇宙就会加速膨胀,把我们变成一个孤立小岛,跟宇宙的其他部分隔绝开来。如果暗能量会增强,最终可能就会把所有物质全部“撕碎”,甚至连空间结构都变得不再稳定。根据对超新星的观测,我们今天最佳的估计是,暗能量的密度相当稳定。有一种观点认为,暗能量正在缓慢增强,但不确定性太大,目前我们还不必担心这一增长。
从2013年9月起,一个名为“暗能量巡天”的国际项目将开始收集数据,旨在进一步了解暗能量。位于智利托洛洛山美洲天文台口径4米的维克托·布兰科望远镜,以及一个专门设计的红外照相机,将在广大的天区中寻找暗能量的若干迹象。该项目主管、美国芝加哥大学的乔舒亚·弗里曼(Joshua Frieman)说:“虽然不是世界上最大的望远镜,但它的视场非常大。”
第一步,这台望远镜将捕获更多的超新星。每一场恒星爆炸的视亮度(就是在我们看来它有多亮),都能告诉我们它们发生在多久之前。这些光向我们传播的过程中,波长会因空间的膨胀而被拉长,也就是红移。把这两样东西结合起来,我们就能测出宇宙如何随时间膨胀。
这项巡天还将绘制一幅复杂的天图,会标出几亿个星系的位置以及它们到我们的距离。在宇宙的婴儿时期曾经在宇宙中回荡的声波,给巨大的超星系团赋予了一个特征尺度。通过测量超星系团的视大小(就是在我们看来它有多大),我们可以从一个新的视角来回顾宇宙膨胀的历史。