用户名:  密码:   
网站首页即时通讯活动公告最新消息科技前沿学人动向两岸三地人在海外历届活动关于我们联系我们申请加入
栏目导航 — 美国华裔教授专家网科技动向科技前沿
关键字  范围   
 
普林斯顿大学和荷兰代尔夫特理工大学固态量子计算平台获新进展
普林斯顿大学和荷兰代尔夫特理工大学固态量子计算平台获新进展
2018/2/22 2:37:19 | 浏览:1219 | 评论:0

普林斯顿大学和荷兰代尔夫特理工大学固态量子计算平台获新进展

  据英国《自然》杂志近日发表的两篇量子信息研究论文,欧洲与美国的科学家分别报告了基于自旋的固态量子计算平台的新进展:一种可编程的二量子比特处理器,可执行两种不同的量子算法;以及单电子自旋与单光子的强耦合,让单独的量子比特可以相互作用。

  近一段时间,基于自旋的量子计算系统的潜在单个组件,已经取得了长足的进步。而此次,荷兰代尔夫特理工大学研究人员托马斯·沃森及其同事则更进一步,他们制造出了一个二量子比特装置,它经过编程可以执行两种不同的量子算法:多伊奇-乔兹萨(Deutsch-Jozsa)算法和格罗弗(Grover)量子搜索算法。其中,前者是一个测试问题,使用量子方法比使用经典方法更容易解决,或者也可以把Deutsch-Jozsa算法当成一种简单的决策程序,可用于量子计算机中的快速运算;而后者则可用于数据库搜索。

普林斯顿大学和荷兰代尔夫特理工大学固态量子计算平台获新进展

  基于半导体自旋量子比特构建量子计算机的一个优点是,它们的寿命比超导自旋量子比特长,缺点是它们的相互作用较弱,难以耦合,而耦合是量子处理器运行所必需的。现有的耦合方法,如交换耦合和偶极—偶极相互作用,在本质上是相对局域的耦合。若要将相距遥远的量子比特连接起来,则需要有一个“中间人”,如微波光子。

  在同时发表的第二项研究中,美国普林斯顿大学研究人员杰森·皮塔与同事表明,被囚禁在微波腔内的光子,可以与被困在硅双量子点内的电子自旋强耦合。这种设置使“自旋—光子耦合”速率足以确保这两种组件形成相干界面,也就是说,这项成果为制造规模更大、应用更灵活的基于自旋的处理器铺平了道路。(张梦然)

 

【相关评论】量子计算机:奇迹还是幻影?

 

十六年前,在耶鲁大学寒冷二月中的一天,一张海报引起了Gil Kalai的注意。它刊登了由量子计算专家Michel Devoret做一系列讲座,讲座宣称将要探讨“量子计算机:奇迹还是幻影”这个问题。Kalai十分希望看到关于量子计算的利弊讨论。但是消极方面有点被忽视。他事后回忆道。于是,他开始亲自投身到这方面的探索

普林斯顿大学和荷兰代尔夫特理工大学固态量子计算平台获新进展

现在,这位来自耶路撒冷希伯来大学的数学家已经成为了反量子计算的代表人士,他在这个由某些数学家、物理学家和计算机科学家组成的松散联盟里面十分活跃。们主张,量子计算的所有理论承诺在某种程度上可以说都是空中楼阁他们中的一些人认为,存在足够充分的理论原由证明,量子计算机的核心——“量子比特永远无法按照需求执行复杂的编排。而另一种观点则认为,这些机器难以实际运作,或者即便它们真的建成,它们微不足道的优势不足以弥补成本。

Kalai从数学家和计算机科学家的角度来处理这个问题。他着眼于计算复杂度与量子噪声来分析这个问题。他认为,所有的物理系统都会产生噪声,而保持高度敏感的“叠加态”的量子将不可避免地被外部世界的相互作用所破坏。他说,降噪的意图不是工程技术实现得了的。这样做会违反某些根本的计算定理。

Kalai知道他的观点是少数派。像IBM,英特尔和微软这样的公司已经在量子计算方面投入巨资; 而风险资本家正在出资帮助量子计算初创公司(如Quantum Circuits,由Devoret和他的两位耶鲁同事组建)。 其他国家,尤其是中国,在这方面研究的注资规模达到了数十亿美元。

Quanta杂志最近与Kalai做了一次访谈,主题是关于量子计算和量子噪声问题,以及量子计算十余年的工作是否有可能在几周内被证明是一个错误。以下是对话的精编版本:

你何时开始质疑量子计算机的?

起初,像其他人一样,我对量子计算抱以非常大的热情。 但在米歇尔·德沃雷特在2002年一次名为“量子计算机:奇迹还是幻影”的演讲中,让我感觉到对量子计算的怀疑与批判有点被忽略。与标题所宣称的不同,这场演讲通篇是关于量子计算的溢美之辞,而它“幻影”的一面并没有得到应有的重视。

你何时开始研究这个“幻影”?

到2005年我才决定自己开展研究。 那时我看到了一个科学契机,以及它与我早期工作的一些可能的联系。那是1999年与Itai Benjamini和Oded Schramm 一同完成的一些工作,内容主要关于噪声敏感性和噪声稳定性。

关于“噪声”

我通过噪声来意指一种过程中的错误,对噪声的敏感度是衡量噪声(亦即错误)将会在多大程度上影响过程输出的标准。量子计算跟自然界中的任何相近过程类似,具有噪声,伴有随机波动和错误。当量子计算机执行一个动作时,在每个计算机周期中,有一定概率的量子比特将会被扰动。

这些扰动是问题的关键吗?

我们需要所谓的量子纠错。 但是这需要100或甚至500个“物理”量子位来表示高质量的单个“逻辑”量子比特。 然后,为了构建和使用这种量子纠错码,噪声量必须低于某一阈值。为了从数学上确定所需的阈值,我们必须有效地模拟噪声。 我认为这将是一个有趣的挑战。

你做了什么?

我试图理解,如果由噪声引起的错误是相互联系或链式的,将会发生什么。有一句希伯来谚语叫做祸不单行(Trouble comes in clusters.);英文里则叫做:屋漏偏逢连夜雨(When it rains, it pours.)。换句话说,交互系统会有错误彼此关联的倾向。错误极有可能会一次性波及很多量子比特。

所以在过去十年左右,我一直在研究复杂量子计算中将呈现出何种相关性,以及哪种相关性会导致量子计算机的失败。

在我以前有关噪声的工作中,我们使用了一种名为傅立叶分析的数学方法,它可以将复杂波形分解为更简单的组成部分。我们发现,如果这些破碎波的频率很低,那么这个过程就很稳定,如果它们偏高,这个过程就很容易出错。

之前的工作让我在2014年与希伯莱大学计算机科学家Guy Kindler一起完成了一篇论文。我们的计算表明,量子计算机中的噪声将消解掉傅里叶分解中的所有高频波。如果你将计算过程想象成贝多芬的交响乐,那么噪音将使我们只能听到贝司,而不能听到大提琴,中提琴或者小提琴。

这些结果也给予了我们充分理由认为,噪音水平不能被有效降低,它仍然远高于达成“量子霸权”、实现量子纠错时所要求的水准。

为什么我们不能把噪音水平

降低到这个阈值以下?

许多研究人员认为我们可以超越门槛,构建量子计算机仅仅是关于降低噪声的工程性、技术性挑战。 但是,我们的第一个结果却表明,噪声水平不能被降低,因为这样做会与基础计算设备的功率计算理论的观点矛盾。 嘈杂的中小规模量子计算机提供原始的计算能力。 它们太原始了,无法达到“量子霸权”。“量子霸权”不可行,遑论更难的量子纠错码呢。

你的对手们是如何回应的?

我的批评者指出,我与Kindler的工作涉及的是量子计算的一种限制形式,并认为我们的噪声模型不是物理的,而是对实际物理情况的数学简化。但我十分确信我们的简化模型所展示的是一个真实而普遍的现象。

此外他们还指出了两个可疑之处:第一是我试图从计算的考虑中得出有关物理设备工程的结论;第二是从通常应用于大系统的计算理论的推论中得出有关小尺度量子系统的结论。不过我同意,这些的确是不寻常的,甚至可能有些奇怪的分析。

最后,他们认为,这些工程难题不是根本阻碍,只要有足够的努力和资源,噪声可以根据需要降低到接近于零。但我认为,对于任何通用量子线路的实现而言,要获得足够低的误差水平,其代价会随着量子比特的数量呈指数爆炸式增长,因此量子计算机是不可能的。

你怎么能如此确定?

我很确定,但的确也有点担心我的主张被证明是错的。 我们的结果表明,噪声会破坏计算,而噪声结果将很容易在经典计算机上模拟。 这个预测已经可以测试了; 你甚至都不需要50量子比特,我相信10到20个量子比特就足够了。

而对于谷歌和IBM正在构建的那类量子计算机,他们希望,当您按计划执行某一计算过程时,能够得到在传统计算机上难以实现的强大效果。显然,我认为他们的企图将会落空。 所以其实我不需要有多肯定,我只需静静等待,看它的结果就行了。

普林斯顿大学和荷兰代尔夫特理工大学固态量子计算平台获新进展



相关栏目:『科技前沿
工信部:未来产业六大方向聚焦人形机器人、脑机接口、量子科技等领域 2024-11-06 [278]
Gartner 公布2025年十大战略技术趋势 2024-10-31 [435]
这样图解Transformer应该没人看不懂了吧——Transformer工作原理 2024-10-16 [805]
Nature:智能体涌现出语言 2024-10-16 [781]
50个顶级ChatGPT论文指令 2024-10-10 [993]
推荐五种简单有效的数据可视化方式 2024-10-10 [924]
这么有深度的文章是ChatGPT写的? 2024-10-10 [919]
讲透一个强大的算法模型,CNN!! 2024-10-10 [911]
人类与 AI 协同的三种模式 2024-10-10 [553]
11 种经典时间序列预测方法! 2024-10-09 [486]
相关栏目更多文章
最新图文:
:《2019全球肿瘤趋势报告》 :阿尔茨海默病预防与干预核心讯息图解 :引力波天文台或有助搜寻暗物质粒子 :Sail Through the Mist - SoCal Innovation Forum 2019(10/5) 游天龙:《唐人街》是如何炼成的:UCLA社会学教授周敏的学术之路 :“为什么海外华人那么爱国,但是让他回国却不愿意?...“ :学术出版巨头Elsevier 彻查433名审稿人“强迫引用”黑幕 :中国336个国家重点实验室布局
更多最新图文
更多《即时通讯》>>
 
打印本文章
 
您的名字:
电子邮件:
留言内容:
注意: 留言内容不要超过4000字,否则会被截断。
未 审 核:  是
  
关于我们联系我们申请加入后台管理设为主页加入收藏
美国华裔教授专家网版权所有,谢绝拷贝。如欲选登或发表,请与美国华裔教授专家网联系。
Copyright © 2024 ScholarsUpdate.com. All Rights Reserved.