每年在佛罗里达召开的视觉科学年会(VSS,Visual Science Society)上,都会评出当年最出色的十大视觉错觉。许多视觉科学研究者、神经科学爱好者、平面设计艺术家蜂拥而至,热闹非凡。
俗话说:眼睛是心灵的窗口。人们常说眼见为实,用来形容一个物体或者一件事情只有亲眼看见了才相信它是真的。但是却有那么一类图形长期流传于网络、报刊,能够瞒天过海般的骗过你的眼睛,让你觉得自己似乎变傻了。即便是你知道了其中的玄机,却也无论如何也无法说服自己的眼睛,它们就是视觉错觉。
下面让我们欣赏一下几个惊艳的视觉错觉。图1中呈现的棋盘格亮度错觉中,A、B两块区域的亮度实际上是相同的,但是将它们放置于不同的图形环境下,人们会依据视觉经验感觉到不同的亮度。同样的亮度的物体,呈现在阴影中的时候,我们会感觉到它更亮一些,而在光照丰富的环境中,我们会感觉到它更暗一些。
是我们的眼睛坏了吗?
首先要简单介绍一下我们的视觉系统:如图所示,我们的视觉系统由暴露在外的眼球,视神经和视觉皮层所组成。我们的眼睛是外部图像进入视觉系统的第一个环节,光学信号在视网膜上被转换成电信号,通过视神经传入视皮层的神经元海洋之中。
眼球是一部全自动聚焦成像图像采集系统,在性能上超越目前世界上任何一部数码相机。眼球上即使很小的损伤都会引起严重的视力问题,最普遍的就是近视眼、老花眼。
还有些类似错觉感觉的疾病,如有些人眼睛由于玻璃体浑浊而出现‘飞蚊症’,还有些人由于视网膜上缺乏相应的感光色素细胞而出现‘色盲’或者‘色弱’。这些病理性的异常都会对患者的正常生活产生严重的影响。
上面的这些错觉图形,一开始就是视力正常的人们所设计出来的,随后正是由于大家觉得这些图形轻而易举的就欺骗了他们的眼睛而引起广泛兴趣,并不断传播开来。而眼睛出现损伤或者发育异常,往往导致严重的视觉感知障碍。
因此,从统计学意义上来讲,我们的眼睛是正常的。让我们更加精确的定义一下视觉错觉:人们的主观感觉与图形的物理参数不匹配的现象。这种感觉与实际不匹配的现象,在绝大多数情况下,并不会对事主的生活造成不良影响。
图6 人的视觉系统:人眼的解剖结构以及视皮层的信息流
大脑的bug?
既然我们的眼睛是好的,视觉通路又都是好的,那么为什么在错觉图形的条件下我们无法真实的感知外部图像呢?难道这是我们的视觉皮层在进化中出现的漏洞?关于这个问题,目前还没有一个统一的解释。
我们已知外部世界的图像通过眼睛的折光系统投射到视网膜上这一步骤是十分忠实于光学原理的。但是当外部图像在视网膜上被转换成电信号并进入大脑之后,皮层对于图像信息进行了进一步的解读。
这种解读模式,在经过了亿万年的进化之后,必然是以一种最‘接地气’、最‘懂’这个世界的方式进行的。比如由于红绿拮抗神经元的存在,导致红花衬托在绿叶上面格外鲜艳、红橙色的果实在自然界中占据大多数;由于我们的大脑会存在‘填补效应’,一个人的身体被遮挡住了一部分,我们并不会认为这个人的身体少了一块;由于大脑中存在专门负责面部识别的脑区,人们对于脸部识别更加敏感。
自然界中的图像,由于受太阳照射、重力、水流、气流等因素的影响,总是以一种特定的形态存在,这也将视觉系统塑造成了擅长于处理这类视觉图形。而错觉图形都是人们通过精心构思设计出来的,在自然界中几乎很少存在这样的图案,而我们的视觉系统作为一种进化的产物,初次遇到这样的图形会用它固有的方式去理解,就会出现类似‘理解偏差’的现象,是我们的大脑对于图像的一种固有信息提取方式在遇到新情况下的体现,也可以理解成为一种大脑进化不够完美而出现的bug。
图7 左图:竖条纹会使人看起来比实际上更瘦一些。右图:一幅布满错觉轮廓条纹的艺术作品。
视觉错觉现象—窥探大脑运行基本原理的窗口
我们的大脑,无论是负责躯体运动的脑区、负责听觉的脑区,还是负责视觉信息的脑区,他们的基本构成元件都是极其类似的:神经元。更加让人不可思议的是,虽然不同脑区所负责的功能差别十分巨大,但是其皮层组织结构、层次从外观上来看高度相似,因此许多人都推测整个大脑有一个基本的运行原理。
目前的神经科学研究,多数情况下还是将大脑中的神经元当成一个个物理元件来研究的,这些物理元件在神经网络中表现出来的各种性质是目前大家最为关心的问题。目前关于神经网络的信息处理方式的推测,基本上按照一种线性或者非线性加和的处理方式来进行的。而各种错觉信息的‘不按常理出牌’的模式,为研究神经元活动提供了许多新的思路。
其中最著名的研究,是在猕猴大脑中发现了物理上并不存在的错觉轮廓的神经元的调制反应(图9)。关于错觉轮廓产生的生理基础,美国范德堡大学的 von der Heydt等人曾经做出过解释:他们认为在大脑中存在一些对端点、或者角存在反应的细胞,这些细胞的反应总和被更高级别的神经元整合,从而产生了大脑对于这种错觉轮廓空间方位的调制性反应(图9a)。
后来,中国科学院神经科学研究所王伟实验室发现了猕猴的 V4 脑区也能够“看见”错觉轮廓,由于 V4 脑区的神经元接收来自 V1/V2 脑区的输入,其感受野也更大一些,相当于是V1/V2 神经元的“上司”。王伟实验室的研究推测在大脑中可能存在一个类似前馈-反馈的作用机制来解读错觉轮廓信息(图9b 中,来自 V1/V2 的视觉信息上行传递到 V4,V4 通过对所接收到的信息进行提取增强,并且反馈给 V1/V2 脑区,从而提升大脑的工作效率。)。
视觉错觉产生的脑神经机制究竟是啥?
2月19日,《神经科学杂志》期刊在线发表了题为《随着光流:真实光流运动向错觉光流运动转换的脑神经机制》的研究论文。该研究由中科院神经科学研究所、脑科学与智能技术卓越创新中心、神经科学国家重点实验室和中科院灵长类神经生物学重点实验室视知觉脑机制研究组完成。
光流运动(Flow motion)视觉错觉包括旋转错觉,收缩和扩张错觉以及螺旋运动错觉。结合心理物理实验和脑功能核磁成像技术,王伟课题组通过与其它课题组的前期合作,首先揭示了旋转运动错觉的表征区域问题,他们发现编码真实旋转运动的人内颞上区(MST)也能够编码错觉旋转运动(Pan et al.,2016; Wang et al., 2018)。
以此为基础,王伟课题组及其同事进一步探索了真实光流运动向错觉光流运动转化的脑神经生理机制。这种信息转化机制的阐明能够帮助人们更好地理解视觉信息在不同等级脑区之间的传递过程以及从局部到整体的视觉信息整合的加工原理。
当然,仅仅是发现编码错觉轮廓的神经元,对于人们理解和认识视觉系统的基本原理是远远不够的。目前人们除了在人上开展心理物理实验、核磁共振扫描研究以外,还进行大量的动物生理学实验来研究各种错觉现象更深层次的生理基础,从短期目标上来讲,是要理解视觉系统的基本原理,而从长远来讲,则是为了掌握整个大脑的基本运行规律。而错觉,为为我们提供了窥探大脑奥秘的窗口。