用户名:  密码:   
网站首页即时通讯活动公告最新消息科技前沿学人动向两岸三地人在海外历届活动关于我们联系我们申请加入
栏目导航 — 美国华裔教授专家网最新消息社区报道
关键字  范围   
 
喻梦捷教授研发出首台可保护光学系统免受不需要的反射的集成光学隔离器
2023/6/28 12:57:38 | 浏览:3905 | 评论:0

A first-of-its-kind integrated optical isolator

Device protects optical systems from unwanted reflections with dramatically enhanced performance

 

An optical isolator developed at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS)could drastically improve optical systems for many practical applications.

All optical systems – used for telecommunications, microscopy, imaging, quantum photonics, and more – rely on a laser to generate photons and beams of light. To prevent those lasers from damage and instability, these systems also require isolators, components that prevent light from traveling in undesired directions. Isolators also help cut down on signal noise by preventing light from bouncing around unfettered. But conventional isolators have been relatively bulky in size and require more than one type of material to be joined together, creating a roadblock to achieving enhanced performance.

Now, a team of researchers led by electrical engineer Marko Lončar at SEAS has developed a method for building a highly-efficient integrated isolator that’s seamlessly incorporated into an optical chip made of lithium niobate. Their findings are reported in Nature Photonics.

喻梦捷教授研发出首台可保护光学系统免受不需要的反射的集成光学隔离器

Optical micrograph of the electro-optic isolator chip on thin-film lithium niobate, comprising four devices with varying modulation length.(Credit:Loncar Lab/Harvard SEAS)

“We constructed a device that lets light emitted by the laser propagate unaltered, while the reflected light that travels back towards the laser changes its color and gets re-routed away from the laser,” said Lončar, Tiantsai Lin Professor of Electrical Engineering at SEAS. “This is accomplished by sending electrical signals in the direction of the reflected optical signals, thus taking advantage of the excellent electro-optic properties of lithium niobate,” in which voltage can be applied to change the properties of optical signals, including speed and color.

“We wanted to create a safer environment for a laser to operate in, and by designing this one-way street for light, we can protect the device from the laser’s reflection,” said Mengjie Yu, co-first author on the paper and a former postdoctoral researcher in Lončar’s lab. “To our knowledge, when compared to all other demonstrations of integrated isolators, this device performs the best optical isolation in the world. In addition to isolation, it offers the most competitive performance across all metrics including loss, power efficiency, and tunability.”

“What’s exceptional about this device is that at its core it’s incredibly simple – it’s really just one single modulator,” says Rebecca Cheng, co-first author on the paper and a current Ph.D. student in Lončar’s lab. “All previous attempts at engineering something like this required multiple resonators and modulators. The reason we can do this with such remarkable performance is because of lithium niobate’s properties.”

Another reason for the high performance and efficiency has to do with the size of the device – the team built it at the Harvard Center for Nanoscale Systems, fabricating a chip measuring 600 nanometers thick with etchings(to guide the light using prescribed nanostructures)up to 320 nanometers deep. 

“With a smaller device, you can control light more easily and also put that light in closer proximity to the electrical signals, thus achieving a stronger electrical field with the same voltage,” enabling more powerful control of light, Yu said.

The scaled-down dimensions and ultralow loss property of this platform also boost optical power. 

“Since the light doesn’t have to travel so far, there is less decay and loss of power,” Cheng said. 

Finally, the teams show the device can successfully protect an on-chip laser from external reflection. 

“We are the first team to show the laser’s phase-stable operation under the protection of our optical isolator,” said Yu.

Altogether, the advance represents a significant leap forward for practical, high-performance optical chips. The team reports that it can be used with a range of laser wavelengths, only requiring a counter-propagating electrical signal to achieve the desired effects.

The team hopes the breakthrough – part of a larger, DARPA-funded effort to integrate lasers and photonics components on a chip at extremely small scales – will unlock new capabilities in a range of applications, spanning the telecommunications industry to time-frequency transfer, a way of precisely measuring time down to the atomic and sub-atomic scale that could have implications for quantum research and computing.

“Integrating all aspects of an optical system onto a single chip could replace many larger, more costly, and less efficient systems,” Yu said. “Combining all these things could revolutionize many fields of work.”

Harvard’s Office of Technology Development has protected the intellectual property arising from the Loncar Lab’s innovations in lithium niobate systems. Loncar is a cofounder of HyperLight Corporation, a startup which was launched to commercialize integrated photonic chips based on certain innovations developed in his lab.

The research was a collaboration between Harvard, HyperLight, University of Southern California and Freedom Photonics. Additional paper authors include Christian Reimer, Lingyan He, Kevin Luke, Eric Puma, Linbo Shao, Amirhassan Shams-Ansari, Xinyi Ren, Hannah R. Grant, Leif Johansson, and Mian Zhang. 

This work was supported by the Defense Advanced Research Projects Agency(HR0011-20-C-0137), the Office of Naval Research(N00014-18-C-1043 and N00014-22-C-1041), the Air Force Office of Scientific Research(FA9550-19-1-0376), and a Draper graduate student fellowship.

相关专题二:『美国华裔教授专家网活动集锦
『社区报道』 数学大师丘成桐:为何说中国的科技肯定要倒退20年? 2024-04-26 [153]
『社区报道』 丛京生教授等13位华人学者当选美国艺术与科学院院士 2024-04-26 [140]
『社区报道』 天才陶哲轩“啥是好的数学?” 经济学界呼应“啥是好的经济学?” 2024-04-20 [209]
『社区报道』 UCLA陶哲轩教授力荐、亲自把关:AI for Math照这个清单学就对了 2024-04-16 [272]
『社区报道』 华裔科学家李飞飞:她看见的世界和她改变的世界 2024-04-14 [346]
『社区报道』 陶哲轩转发、菲尔兹奖得主领衔:AI正在颠覆数学家的工作方式 2024-04-08 [426]
『社区报道』 李飞飞教授主讲,斯坦福2024 CS231n开课,依旧座无虚席 2024-04-06 [503]
『社区报道』 丘成桐:为了大统一理论,把宇宙建到十维了 2024-03-28 [698]
『学人动向』 杨振宁挂念了七十多年的师姐,和她背后屹立三个世纪的学霸家族 2024-03-18 [1158]
『社区动态』 晨光基金會(美國)留學生獎助學金 2024-02-10 [2130]
相关专题更多文章
相关栏目:『社区报道
数学大师丘成桐:为何说中国的科技肯定要倒退20年? 2024-04-26 [153]
丛京生教授等13位华人学者当选美国艺术与科学院院士 2024-04-26 [140]
清华学霸杀妻案再度开庭 2024-04-24 [126]
哈佛大学史上最火的文学课,凭什么是“霉霉”? 2024-04-21 [159]
天才陶哲轩“啥是好的数学?” 经济学界呼应“啥是好的经济学?” 2024-04-20 [209]
哈佛大案与亚裔教育维权之路(七):历史性胜利 2024-04-20 [154]
美国华人父母,培养出多少「失败的谷爱凌」? 2024-04-20 [276]
美国“功勋”间谍梁成运,出镜忏悔! 2024-04-16 [389]
文化输出?生态学文章惊现“三体” 2024-04-16 [264]
UCLA陶哲轩教授力荐、亲自把关:AI for Math照这个清单学就对了 2024-04-16 [272]
相关栏目更多文章
最新图文:
:“为什么海外华人那么爱国,但是让他回国却不愿意?...“ :学术出版巨头Elsevier 彻查433名审稿人“强迫引用”黑幕 :中国336个国家重点实验室布局 :中澳政府联合出手打击洗钱和逃税漏税 大量中国居民海外账户遭冻结 :摄影师苏唐诗与寂寞百年的故宫对话6年,3万张照片美伦美奂 :大数据分析图解:2019中国企业500强 张梦然:英国惠康桑格研究所:人体内的微生物与出生方式有关 :美众议院将调查华裔部长赵小兰“利用职权为家族谋利“
更多最新图文
更多《即时通讯》>>
 
打印本文章
 
您的名字:
电子邮件:
留言内容:
注意: 留言内容不要超过4000字,否则会被截断。
未 审 核:  是
  
关于我们联系我们申请加入后台管理设为主页加入收藏
美国华裔教授专家网版权所有,谢绝拷贝。如欲选登或发表,请与美国华裔教授专家网联系。
Copyright © 2024 ScholarsUpdate.com. All Rights Reserved.