由巴塞尔大学Biozentrum的Markus Affolter教授领导的研究小组开发了一种新方法,进一步改进了现有的CRISPR/Cas技术:它实现了在基因水平上更精确和无缝地将标签引入蛋白质。
The research group led by Prof. Markus Affolter at the Biozentrum, University of Basel, has developed a new method that further improves the existing CRISPR/Cas technologies:it allows a more precise and seamless introduction of tags into proteins at the gene level.
这项技术可以显著改善对生物体蛋白质的研究,并为医学研究开辟新的可能性。
This technology could significantly improve research on proteins in living organisms and opens up new possibilities for medical research.
有了革命性的CRISPR/Cas技术,生物体的DNA可以被精确地改变。
With the revolutionary CRISPR/Cas technology, the DNA of living organisms can be precisely altered.
巴塞尔大学生物中心的Markus Affolter教授的团队现在已经在果蝇(Drosophila melanogaster)中开发了SEED/Harvest的新方法。
Prof. Markus Affolter's team at the Biozentrum, University of Basel, has now developed a new method called SEED/Harvest in the fruit fly(Drosophila melanogaster).
该方法将CRISPR-Cas9技术与单链退火(SSA)修复途径相结合,使全基因组的改变更有效地进行,而不会留下错误。
This method combines the CRISPR-Cas9 technique with the Single-Strand Annealing(SSA)repair pathway, enabling genome-wide changes to be carried out more efficiently and without leaving unwanted scars.
这项研究发表在《发育细胞》杂志上。
The study has been published in Developmental Cell.
SEED/Harvest方法分两个步骤进行。
The SEED/Harvest method proceeds in two steps.
在第一步中,研究人员将一个标记基因引入蛋白质编码区域内所需的DNA位点。
In a first step, the researchers introduced a marker gene into the desired DNA site within a protein-coding region.
该标记放置在目标位置,用于隔离成功的修改。
This marker is placed at the targeted location and is used to isolate successful modifications.
在第二步中,标记被切除,DNA断点通过单链退火(SSA)修复途径修复。
In a second step, the marker is excised and the DNA breakpoints are repaired by the Single-Strand Annealing(SSA)repair pathway.
第一作者Gustavo Aguilar解释说:“这使我们能够在保持DNA完整功能的同时无缝切割DNA。”
«This enables us to cut the DNA seamless while maintaining its full function», explains first author Gustavo Aguilar.
“两种方法的结合使得标记基因组中任何所需蛋白质而不附带损害成为可能,使我们能够研究活生物体中蛋白质的功能。”
«The combination of both methods makes it possible to mark any desired protein in the genome without collateral damage, allowing us to study the functions of proteins in living organisms.»
SEED/Harvest方法两者兼而有之。
And the SEED/Harvest method is both.
它结合了最强大的筛选成功的插入和无缝标签的所有优点
It combines the most robust screening of successful insertions and all the advantages of seamless tagging.
SEED/Harvest方法的优点之一是可以在特定的组织和细胞类型中标记蛋白质。
One of the advantages of the SEED/Harvest method is that proteins can be labeled in specific tissues and cell types.
Gustavo Aguilar补充说:“我们现在可以控制和确定在不同的组织和发育阶段,基因何时何地被激活或灭活。”
«We can now control and determine in various tissues and developmental stages when and where genes are activated or inactivated» adds Gustavo Aguilar.
这为研究实时系统地研究活细胞中的蛋白质动力学开辟了新的可能性。
This opens up new possibilities for research to investigate the dynamics of proteins systematically in living cells in real-time.
Affolter说:“SEED/Harvest方法也可以用于医学研究,例如,识别由疾病基因引起的缺陷。”
«The SEED/Harvest method could also be of interest for medical research, for example, to identify defects caused by disease genes,» says Affolter.
Original publication:
Gustavo Aguilar, Milena Bauer, M. Alessandra Vigano, Sophie T. Schnider, Lukas Brügger, Carlos Jiménez-Jiménez, Isabel Guerrero, Markus Affolter; "Seamless knockins in Drosophila via CRISPR-triggered single-strand annealing"; Developmental Cell