美国德克萨斯大学达拉斯分校和华盛顿州立大学的研究人员发现,利用铝钛合金作为催化剂,即使在低温下也能分解并捕获单个氢原子。这为构建经济、实用的燃料存取系统奠定了基础。相关研究报告发表在近期出版的《自然·材料》杂志网络版上。
当两个氢原子相遇时,它们会结合形成一个非常稳定的氢分子。但氢分子必须在极大的压力和极低的温度下才能存储,这使想要利用其驱动车辆或为家庭供电都无法成为现实。因此科学家希望找到一种材料,能够在一般的温度和压力下,高效存储单个氢原子,并在需要时将其释放。
而将氢分子转化为氢原子,通常需要催化剂打破两个氢原子间的化学键,目前可用的最佳催化材料通常由钯和铂等贵金属制成,其可以有效激活氢,但稀有性和昂贵的造价限制了它们的广泛使用。
此次研究小组通过向铝中浸注少量钛形成铝钛合金作为激活氢的催化剂,以实现氢的高效存储。铝金属含量丰富,钛的自然界含量比贵金属更加丰富,且在合金中的含量极少。
为了观测铝钛合金表面是否确有催化反应发生,研究人员在对温度和压力的严格控制下,将基于红外反射吸收的表面分析新方法、首个基于原理的催化剂效能和光谱响应预测模型融入了研究。他们将一氧化碳分子作为探针,一旦原子氢产生,绑定在催化金属中心的一氧化碳所吸收的波长便会变短,表示催化剂正在工作。结果表明,即使处于非常低的温度,这一变化仍会发生。
科研人员表示,虽然钛不一定是最佳的催化金属,但结果首次显示钛铝合金也能激活氢,并具备经济、含量丰富等优势。而作为氢储存系统的一部分,铝钛合金催化材料另一更大优势在于,铝能在钛的辅助下和氢反应形成氢化铝固体,而氢化铝中存储的氢可简单通过提高温度释放出来,这正是发展实用型燃料存取系统的关键一步。
与传统汽车相比,氢燃料电池车是将燃料的化学能直接转换为电能,不需要进行燃烧,能量转化效率高达60%—80%,为内燃机的2—3倍,而且污染少、噪音小。氢燃料电池车的优势毋庸置疑,然而劣势也显而易见。尽管氢燃料电池车的安全性、氢燃料贮存技术等问题正逐步攻克并不断完善,但成本问题依然是阻碍其发展的最大瓶颈。但愿铝钛合金这一不算太贵催化剂的出现,能让氢燃料电池车普及的步伐迈得更快些。