最近,美国波士顿大学和哈佛医学院、马萨诸塞州总医院合作,开发出一种给细胞重新编程、设计基因线路的新方法,能大大增加基因“零件”的数量,构建更大更复杂的基因网络。该方法不仅大大丰富了合成生物学家的工具箱,还能帮人们理解生物行为及其发展演变,发挥多种实际应用价值。相关论文在线发表于8月2日的《细胞》杂志上。
合成生物学的目标是通过把基因“零件”组装成“线路”,在活细胞内部执行逻辑操作,造出有特殊功能的细胞,解决医药、能源和环境领域的关键问题。然而要实现这一目标,必须有更多可靠的基因零件,只靠“现成”的细菌基因是远远不够的。目前,大部分合成生物学家都是用现有细菌的基因片段作组装零件,转移到其他真核细胞中来构建基因线路。
新方法提供了一种构建和分析真核细胞基因线路的新模式。研究人员用一种叫做“锌手指”的蛋白质与真核细胞本身的功能基因片段结合,“锌手指”蛋白经过编程后能与期望的DNA序列结合,形成的新零件具有模块化的性能,可广泛用于多种功能设计当中。通过模块零件来设计基因线路,摆脱了对现有细菌基因的依赖,能构建出更大更复杂的线路。
“我们的方法在治疗领域也有潜在应用,比如对与疾病相关的重要基因与基因网络进行动态修改和控制。” 该研究领导、波士顿大学生物医学工程师阿哈迈德·卡利尔说,其他医疗应用还包括:损伤与疾病的干细胞疗法、细胞内置工具、癌症及其他疾病早期诊断线路等。