用户名:  密码:   
网站首页即时通讯活动公告最新消息科技前沿学人动向两岸三地人在海外历届活动关于我们联系我们申请加入
栏目导航 — 美国华裔教授专家网科技动向学人动向
关键字  范围   
 
安金鹏:立秋 | 无理数与结构有关吗?
2023/8/14 17:40:08 | 浏览:2116 | 评论:0

安金鹏:立秋 | 无理数与结构有关吗?

无理数在不同数学家那里得到了不同的待遇。一方面,对于度量数论、超越数论和丢番图逼近等方向,无理数为核心的研究对象。例如,在丢番图逼近中,人们关注无理数能够被有理数逼近的优劣程度,也关心这样的问题:是否对任意小的正实数 ,总存在不全为零的整数 ,使得 ?另一方面,由于 Bourbaki学派的影响和数学发展的内在需求,很多方向更为重视基于结构所建立的理论体系,上面的问题难以获得这种结构主义价值观的青睐。确实, Bourbaki学派的“发言人” Dieudonné就将判断某些数是否为无理数的问题定位为“胎死腹中”( stillborn)的问题 [文献1]

上面的问题为关于无理二次型的 Oppenheim猜想的特殊情形。数论中的 Meyer定理断言:对于正整数 和任意有理系数非退化不定 元二次型 ,存在不全为零的整数 ,使得  Oppenheim 1929年猜想,类似的结论对无理二次型也成立,并在后来将条件减弱为 。猜想的完整陈述为:设  为实系数非退化不定 元二次型,其中某两个非零系数的比值为无理数,则对任意小的正实数 ,存在不全为零的整数 ,使得 。类似的命题对 并不成立 [注释1]。另一方面,通过考虑 适当的有理子空间容易看出,如果 Oppenheim猜想对某个正整数 成立,则它对任意 也成立。利用圆法等解析数论方法,人们证明了 Oppenheim猜想对 成立。但是,对于更小的 ,特别是对最强的 的情况,传统的数论方法一筹莫展。

Oppenheim猜想这一涉及无理数的问题貌似与结构无关,却被 Margulis 1980年代利用结构数学的工具完整证明。为了解释 Margulis的证明,不妨设 。考虑李群 以及它的两个子群  ,其中 为三元二次型  中的稳定子群。由线性代数可知:对任意实系数非退化不定三元二次型 , 存在非零实数 和群元素 使得 ,并且陪集  所决定。 Cassels Swinnerton-Dyer以及 Raghunathan独立发现了下面的关系:考虑群 在(非紧)齐性空间 上的左平移作用和陪集 所在的轨道 ,则有

· 二次型 的某两个非零系数的比值为无理数的充要条件是:轨道 不是空间 中的闭集;

·二次型 满足 Oppenheim猜想的结论的充要条件是:轨道 是空间 中的无界集,即它的闭包是非紧的。

因此, Oppenheim猜想等价于如下结构味道浓郁的命题:群 在齐性空间 上左平移作用的有界轨道均为闭轨道。 Margulis就是通过证明这一命题,给出了 Oppenheim猜想的完整证明。更详细的讨论可参见 [文献2]

上面的群 为非紧李群。在 Margulis的证明中,需要关注当 中的群元素趋于无穷远时群作用的渐进性质,即群作用的动力系统行为。由于空间 为齐性空间,人们把相应的动力系统称为齐性动力系统。在 Margulis证明了 Oppenheim猜想以后, 齐性动力系统逐渐发展为一个活跃的研究方向,并且在一些貌似无关的数论问题中得到了出人意料的应用。

注释

1. 容易验证,对不全为零的整数 ,总有 

文献

1. J. Dieudonné, A Panorama of Pure Mathematics:As Seen by N. Bourbaki, Academic Press, 1982.

2. G. Margulis, Oppenheim Conjecture, in "Fields Medallists' Lectures", 272-327, World Sci. Publ., 1997.

作者简介

安金鹏,现任北京大学数学科学学院教授,主要研究方向是李理论和齐性动力系统 。1997年至2006年在北京大学数学科学学院学习,获学士、博士学位。

相关栏目:『学人动向
普林斯顿教授“辛辣”点评中国学生:一个普遍的「坏习惯」阻碍了他们的长远发展 2024-11-16 [128]
朱民:中国经济将面临巨大的结构性变化! 2024-11-06 [490]
巫宁坤:活下去,并且“在日暮时燃烧咆哮” 2024-11-04 [529]
周其仁:中国经济高位下行的根本原因 2024-11-03 [552]
张维迎:让我最痛心的是社会变得如此虚伪,如此假话连篇 2024-10-31 [652]
达龙·阿西莫格鲁:制度视角下的中国未来经济增长 2024-10-31 [615]
钱满素:献身精神本身不足以成为一种美德 2024-10-31 [609]
战争琐思录(一):关于诺娃 2024-10-31 [610]
​“中产阶级气质”批判——关于当代中国知识者精神状态的一份札记 2024-10-27 [770]
后生可畏!这位华裔才俊掌控着全球顶尖公司AI模型训练! 2024-10-21 [860]
相关栏目更多文章
最新图文:
:中澳政府联合出手打击洗钱和逃税漏税 大量中国居民海外账户遭冻结 :摄影师苏唐诗与寂寞百年的故宫对话6年,3万张照片美伦美奂 :大数据分析图解:2019中国企业500强 张梦然:英国惠康桑格研究所:人体内的微生物与出生方式有关 :美众议院将调查华裔部长赵小兰“利用职权为家族谋利“ :UCLA CCS 2019 Fall Quarter Lecture Series Overview 谭晶晶:美国科技界高度关注中国科技创新进展 :推荐:2019年底前中国高校重要学术论坛(10月 - 12 月)
更多最新图文
更多《即时通讯》>>
 
打印本文章
 
您的名字:
电子邮件:
留言内容:
注意: 留言内容不要超过4000字,否则会被截断。
未 审 核:  是
  
关于我们联系我们申请加入后台管理设为主页加入收藏
美国华裔教授专家网版权所有,谢绝拷贝。如欲选登或发表,请与美国华裔教授专家网联系。
Copyright © 2024 ScholarsUpdate.com. All Rights Reserved.